Ivonne SGURA

Ivonne SGURA

Professore II Fascia (Associato)

Settore Scientifico Disciplinare MAT/08: ANALISI NUMERICA.

Dipartimento di Matematica e Fisica "Ennio De Giorgi"

Ex Collegio Fiorini - Via per Arnesano - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 7591

Area di competenza:

Settore Scientifico Disciplinare: Analisi Numerica - Numerical Analysis

Numerical methods for differential equations: matrix-oriented methods, ADI methods, finite elements methods for PDEs on stationary and evolving surfaces, approximation of spatio-temporal dynamics and Turing pattern formation in reaction-diffusion PDEs, parameter estimation in ODEs with oscillatory dynamics, high order finite differences for Boundary Value Problems (BVP)

Applied Mathematics & Scientific Calculus: mathematical modeling, computational  issues, numerical simulations for

  • Morphochemical pattern formation during metal growth in electrochemistry (e.g. battery charging processes)
  • Deformation of rubber-like and fiber-reinforced materials in bio-mechanics and nonlinear elasticity
  • Parameter estimation by Nonlinear Least Squares and Deep Learning techniques for problems in different scientific fields
Orario di ricevimento

A.A. 2023/24 - Primo semestre

Contattare il docente per email per fissare un appuntamento

 

Recapiti aggiuntivi

Campus Ecotekne, Edificio Fiorini F1, Stanza 325, piano terra (lato copisteria)

 

ORCID: orcid.org/0000-0001-9207-5832   SCOPUS Author ID: 6603115525

More info:

www.researchgate.net/profile/Ivonne_Sgura

www.growkudos.com/hub/73462/publications

www.mendeley.com/profiles/ivonne-sgura2/publications/

scholar.google.it/citations?user=IdJV4zwAAAAJ&hl=it

Further research information

  • Italian Professorship Qualification (ASN-2016), full professor habilitation in Numerical Analysis (August 2017
  • Member of the Istituto Nazionale di Alta Matematica (INdAM, Section of Scientific Calculus -GNCS)
  • Web page on ResearchGate: https://www.researchgate.net/profile/Ivonne_Sgura/
  • Supervision of the PhD Thesis of Massimo Frittelli that was the winner of the Italian National Award for the Mathematics (INdAM-UMI-SIMAI) 2019 edition, for more details:

https://umi.dm.unibo.it/wp-content/uploads/2020/07/VincitoriINdAM_SIMAI_UMI2019.pdf

November 20th, 2020: https://www.youtube.com/watch?v=VG42FR4pRPY&t=325s

 

BIBLIOMETRY  (LAST UPDATE 10/7/2022)

WEB OF SCIENCE: 72 PAPERS, H-INDEX 18

Times Cited     1435  (1206 without self citations)  1046 Citing articles

SCOPUS:    87 PAPERS, H-INDEX 19 (update 08/02/2023)

Times Cited     1744  (  1115 without self cit of all authors)

INDICATORI ASN 2018-2020: 01/A5 ANALISI NUMERICA / (IRIS UNISALENTO SIMULATION 15.5.2023).

PRIMA FASCIA/COMMISSARI

Number of articles 10 years (2013-2023)           34                ASN THRESHOLD:     13/ 22

Number of citations 15 years(2008-2023)          868              ASN THRESHOLD: 160/ 405

H-index 15 years (2008-2023)                      17           ASN THRESHOLD:      7/ 12

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Ivonne Sgura is Associate Professor of Numerical Analysis at the Department of Mathematics of the University of Salento, Lecce (Italy) since November 2010.  In August 2017 she got the Italian National Habilitation (ASN) for Full Professor in Numerical Analysis. She got her PhD in Mathematics at the University of Pisa in 1996. Research activity in the years 1996-1999 was carried out at the Institute for Research of Applied Mathematics (I.R.M.A.) of the Italian National Research Council (CNR) in Bari, where she spent more than three years until January 2000. In the years 2000-2010 she was Senior Lecturer of Numerical  Analysis in the Faculty of Sciences of the University of Salento, Lecce.


Her current main research activity concerns innovative and accurate numerical methods for the solution of differential equations and related applications. Further interests are connected to the study of mathematical models, computational techniques and numerical issues for
- nonlinear elasticity (deformations of rubber-like and fiber-reinforced materials, approximation of singular solutions for ODE-BVP);
- electrochemistry (fuel cell degradation, metal growth and pattern formation, traveling wave approximation);
- the DNA molecule (approximation of compact solutions for the opening dynamics, ill-conditioning in data fitting by worm-like-chain interpolation formulae);
- inverse problems in linear algebra (conservative and gradient flow methods for matrix completion and structured eigenvalue problems).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

TEACHING (in italian):

A.A. 2020/21,

ANALISI NUMERICA: corso di laurea MAGISTRALE in Matematica - I sem, 9CFU (vedi PROGRAMMA nella sezione DIDATTICA/ MATERIALE DIDATTICO)

CALCOLO NUMERICO: Corso di Laurea TRIENNALE in Matematica - 270,  II sem, 6 CFU  (vedi PROGRAMMA nella sezione DIDATTICA/ MATERIALE DIDATTICO)

A.A. 2019/20,

ANALISI NUMERICA: corso di laurea MAGISTRALE in Matematica - I sem, 9CFU (vedi PROGRAMMA nella sezione DIDATTICA/ MATERIALE DIDATTICO)

ANNI PRECEDENTI: 2018/19, 2017/18, 2016/17, 2015/16, 2014/2015, 2013/14, 2012/13,  2011/12,  2010/11

ANALISI NUMERICA: corso di laurea MAGISTRALE in Matematica - II sem, 9CFU (vedi PROGRAMMA nella sezione MATERIALE DIDATTICO)

CALCOLO NUMERICO: Corso di Laurea TRIENNALE in Matematica - 270,  II sem, 6 CFU  (vedi PROGRAMMA nella sezione  MATERIALE DIDATTICO)

A.A. 2009/2010:

Calcolo Numerico II, Corso di laurea specialistica in Matematica, I sem, 9CFU

Calcolo Numerico , Corso di Laurea in Matematica - 270, II sem, 6 CFU

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2000 - presente: Dalla data di presa di servizio (01/02/2000) come ricercatrice presso l’Università di Lecce, l’Attività Didattica svolta riguarda lezioni ed esercitazioni per i corsi di Analisi Numerica (MAT/ 08) presso la Facoltà di Scienze MM.FF.NN., la Facoltà di Ingegneria ed il Dottorato in Matematica dell’Università di Lecce,  in particolare:

 §  esercitazioni nei corsi di Calcolo Numerico e Programmazione I e II, Corso di laurea in Matematica negli A.A. 1999/2000, 2000/01, 2001/02;

§  affidamento a titolo gratuito dei Corsi di:

Laboratorio di Calcolo Numerico I (CdL Matematica N.O., 4CFU); A.A. 2001/02 e A.A. 2002/03 (Decreto Rett. N. 1991 del 29.9.03)A.A. 2006/2007 (Decreto Rett. N.92 del 10.01.08).

Laboratorio I di Calcolo Numerico (CdL Matematica Applicata N.O, 4CFU) negli A.A. 2001/02 e (Cdl Matematica e Informatica, 6CFU) A.A. 2002/03 (Decreto Rett. N.1989 del 29.9.03) ;

Elementi di Analisi Numerica (CdL Specialistica Matematica, 6CFU) A.A. 2003/04(Decreto Rett. N.2839 del 31.12.04);

Introduzione al Calcolo Numerico (CdL Matematica e Informatica, 6CFU) :A.A. 2003/04 (Decreto Rett. N.2839 del 31.12.04) ; A.A. 2004/05 (Decreto Rett. N.1592 del 23.06.06); A.A. 2005/06 (Decreto Rett. N.1748 del 30.07.07); A.A. 2006/07 (Decreto Rett. N.92 del 10.01.08)

Metodi Numerici per l’Ingegneria (Laurea Specialistica Ing. dei Materiali, 5CFU) A.A 2004/05 (Decreto Rett. N.689 del 24.03.06);

Analisi Numerica,Dottorato di Ricerca in Matematica XIX Ciclo, Università di Lecce, 2° Periodo (ott-nov. 2004) (Collegio dei docenti del 27/02/04, Verb. N.23).

Metodi Numerici per Equazioni Differenziali Ordinarie, (Cdl Matematica e Informatica, 6CFU) A.A. 2006/2007 (Verb. n.768 del 20/12/2006, Fac. Di Scienze , Univ. Salento) e A.A. 2007/2008 (retribuito), A.A.2008/2009 (parz. mutuato da Calcolo Numerico II)

Calcolo Numerico II (CdL Specialistica Matematica, 9CFU) A.A.2007/2008, 2008/2009

Calcolo Numerico I (CdL Matematica e Informatica, 9CFU) A.A.2008/2009

Didattica

A.A. 2023/2024

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2022/2023

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso MATEMATICA PER L'INTELLIGENZA ARTIFICIALE

Sede Lecce

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2023/2024

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso DIDATTICO

Sede Lecce

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2022/2023

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso TEORICO-MODELLISTICO

Sede Lecce

CALCOLO NUMERICO

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2022/2023

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2022/2023

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso DIDATTICO

Sede Lecce

CALCOLO NUMERICO

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2021/2022

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2021/2022

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso GENERALE

Sede Lecce

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso APPLICATIVO

Sede Lecce

CALCOLO NUMERICO

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2020/2021

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2020/2021

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2020/2021

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso APPLICATIVO

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2020/2021

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso GENERALE

CALCOLO NUMERICO

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2019/2020

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2019/2020

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2019/2020

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso GENERALE

Sede Lecce

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2019/2020

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso APPLICATIVO

Sede Lecce

A.A. 2018/2019

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso APPLICATIVO

Sede Lecce

ANALISI NUMERICA

Corso di laurea MATEMATICA

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso GENERALE

Sede Lecce

CALCOLO NUMERICO

Corso di laurea MATEMATICA

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2017/2018

Anno di corso 2

Struttura DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI"

Percorso PERCORSO COMUNE

Torna all'elenco
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2023/2024

Anno accademico di erogazione 2024/2025

Anno di corso 2

Semestre Secondo Semestre (dal 24/02/2025 al 06/06/2025)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2023/2024

Anno di corso 2

Semestre Primo Semestre (dal 18/09/2023 al 15/12/2023)

Lingua ITALIANO

Percorso MATEMATICA PER L'INTELLIGENZA ARTIFICIALE (A227)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Analisi Numerica

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2023/2024

Anno accademico di erogazione 2023/2024

Anno di corso 1

Semestre Primo Semestre (dal 18/09/2023 al 15/12/2023)

Lingua ITALIANO

Percorso DIDATTICO (A218)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Analisi Numerica

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2023/2024

Anno di corso 2

Semestre Primo Semestre (dal 18/09/2023 al 15/12/2023)

Lingua ITALIANO

Percorso TEORICO-MODELLISTICO (A217)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Analisi Numerica

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2023/2024

Anno di corso 2

Semestre Secondo Semestre (dal 26/02/2024 al 07/06/2024)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

ANALISI I e II, GEOMETRIA I e II, ALGEBRA, PROGRAMMAZIONE

 Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici relativi ad argomenti dei primi anni del corso di Laurea. A tal fine, oltre a fornire gli algoritmi di calcolo, si dà rilievo all’analisi delle problematiche connesse all’uso della aritmetica finita. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.

Numerical Computing is the branch of mathematics that develops, analyzes and applies algorithms to solve with the aid of computer several problems included in basic courses of Mathematics (such as analysis, linear algebra, geometry). In this course, the focus is on numerical techniques for the solution of linear systems of any dimension and for rootfinding of nonlinear equations. Questions arising by the use of finite arithmetic on a computer, that is stability, accuracy and computational complexity, will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will learn the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione con un ampio spettro di conoscenze di base di tipo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare alcuni metodi in un linguaggio di programmazione in ambito scientifico # essere in grado di produrre semplici programmi al calcolatore, applicarli con senso critico anche a problemi semplici di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi di base di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e  sviluppare nello studente capacità di: problem solving, rappresentazione grafica di dati, discussione e confronto di risultati numerici.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali in aula ed in Laboratorio Informatico. Circa metà del corso si svolge al calcolatore, con interazione continua fra studenti e docente.

L’esame consiste di norma in una prova scritta ed una prova orale. La prova scritta consiste in tre tracce, due su argomenti teorici del corso che includono ognuna un esercizio da svolgere carta e penna, la terza riguarda argomenti svolti in Laboratorio e la programmazione di semplici pezzi di codice. Il compito è da svolgere in tre ore. La prova orale, che verte essenzialemente sullo scritto, verifica l’abilità di esporre in modo chiaro e rigoroso alcuni contenuti del corso. Se lo studente non supera la prova orale è tenuto a rifare la prova scritta.

Sono, inoltre, previste due prove di valutazione intermedia (esoneri) da svolgersi al calcolatore in Laboratorio Informatico, di norma si svolgeranno una verso fine Aprile e  la seconda subito dopo la fine del corso. Gli studenti che ottengono in queste prove una media del 20 sono esonerati dal sostenere la prova scritta fino alla sessione di settembre e potranno presentarsi al più due volte alla prova orale, utilizzando l’esonero.

Gli studenti dovranno prenotarsi sia all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Calcolo Numerico

Teoria degli errori: Insieme dei numeri di macchina. Rappresentazione dei numeri sul calcolatore: semplice e doppia precisione. Troncamento e Arrotondamento. Errore assoluto e relativo. Condizionamento di un problema. Propagazione degli errori e fenomeno di cancellazione. Analisi del costo computazionale. Metodo di Ruffini-Horner.
Elementi di algebra lineare: Operazioni fra matrici. Definizioni e proprietà di: matrici simmetriche, ortogonali e ortonormali; matrici a predominanza diagonale, matrici definite positive. Autovalori e autovettori: cenni. Norme vettoriali e norme indotte su matrici. Numero di condizionamento di una matrice.

Risoluzione di sistemi lineari: Studio del condizionamento di un sistema lineare. Teorema di perturbazione.

Metodi diretti: Fattorizzazioni di una matrice. Risoluzione di sistemi triangolari (inferiori e superiori). Aspetti implementativi. Matrici elementari. Metodo di eliminazione di Gauss e fattorizzazione LU. Pivot parziale e pivot totale. Analisi dell’errore e della stabilità degli algoritmi. Complessità del metodo di Gauss. Calcolo della matrice inversa. Risoluzione di sistemi tridiagonali: metodo di Thomas. Fattorizzazione di Cholesky. Cenni sulla risoluzione di sistemi sovradeterminati: le equazioni normali e il problema lineare dei minimi quadrati.
Metodi iterativi: definizioni e teoremi di convergenza per metodi iterativi lineari. Stime dell’errore. Criteri di stop e loro validità. Metodi di Jacobi e di Gauss-Seidel: risultati di convergenza. Metodo di rilassamento e stima del parametro ottimale
Calcolo degli zeri di funzioni non lineari: Metodo delle bisezioni: convergenza, criteri di stop. Metodi di iterazione funzionale o di punto fisso: studio della convergenza; criteri di arresto e stime dell'errore; ordine di convergenza. Metodo delle corde e metodo di Newton: interpretazione geometrica, proprietà e ordine di convergenza. Aspetti computazionali.
Per il Laboratorio: Principali comandi di manipolazione di vettori e matrici in ambiente Matlab; Elementi di grafica. Principali funzioni predefinite del Matlab (es: lu, qr, svd, eig, chol, etc). Cenni di programmazione: uso dei comandi for e while; M-file di tipo function e di tipo script. Algoritmi e programmi dei metodi implementati durante le lezioni in Laboratorio.

Programma delle lezioni (in English):

Foundations of Numerical Mathematics. Sources of Error in Computational Models; machine representation of numbers; the Floating-Point Number System: simple and double precision; rounding and truncating a real number; machine Floating-Point Operations.
Elements of matrix analysis. Operations with Matrices; trace, determinant, rank; special matrices: triangular, tridiagonal, banded, diagonally predominant, positive definite; eigenvalues and eigenvectors; spectral radius of a matrix; the Singular Value Decomposition (SVD); vector and matrix norms and their properties.
Solution of Linear Systems. Stability analysis of linear systems and the condition number of a matrix.
Direct Methods: Factorizations of a matrix. Solution of triangular systems and their implementation. The Gaussian Elimination Method (GEM) and LU Factorization: partial and total pivoting; stability analysis and computational complexity. Calculation of the inverse. Tridiagonal systems: Thomas algorithm. Symmetric and Positive Definite Matrices: Cholesky Factorization. Solution of rectangular systems: normal equations and the linear least square problem, QR factorization and SVD solution.
Iterative Methods: definitions and convergence of Linear Iterative Methods. Stopping criteria. Jacobi, Gauss-Seidel and Relaxation Methods: convergence results, estimate of relaxation optimal parameter; convergence results for some class of matrices.
Rootfinding methods for Nonlinear Equations. Bisection method: algorithm and convergence result. Fixed-Point Iterations for Nonlinear Equations: theorems of convergence, rate of convergence. Stopping Criteria and their validity. Methods of Chord, Secant and Newton: geometric meaning, properties and convergence order. Computational aspects.
For Computer Laboratory: Main commands in the Matlab environment for manipulating vectors and matrices and graphical representations. Main built-in functions in Matlab (eg: lu, qr, svd, eig, chol, etc..). How to write and apply M-files like “script” and “function”. Implementation of most of the methods studied in the theory.

  • D. Bini, M. Capovani, O. Menchi. Metodi Numerici per l’algebra lineare. Zanichelli, 1993. (Cap 1-2-3 Cenni, Cap.4, par.1—10,16—18, Cap.5, escluso par.5 e 7)
  • A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, Springer Italia, 2000.(Cap. 1-2-3 parti indicate a lezione; Cap.4, par.1,2; Cap.6,par. 2,3,7.)
  • Appunti forniti dal docente
  • PER MATLAB: Quarteroni-Saleri: Introduzione al Calcolo Scientifico, Esercizi e problemi risolti con Matlab, Springer – CAP 1 e appunti del docente.
CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Semestre Primo Semestre (dal 26/09/2022 al 16/12/2022)

Lingua ITALIANO

Percorso DIDATTICO (A218)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Analisi Numerica

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2022/2023

Anno di corso 2

Semestre Secondo Semestre (dal 27/02/2023 al 09/06/2023)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

ANALISI I e II, GEOMETRIA I e II, ALGEBRA, PROGRAMMAZIONE

 Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici relativi ad argomenti dei primi anni del corso di Laurea. A tal fine, oltre a fornire gli algoritmi di calcolo, si dà rilievo all’analisi delle problematiche connesse all’uso della aritmetica finita. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.

Numerical Computing is the branch of mathematics that develops, analyzes and applies algorithms to solve with the aid of computer several problems included in basic courses of Mathematics (such as analysis, linear algebra, geometry). In this course, the focus is on numerical techniques for the solution of linear systems of any dimension and for rootfinding of nonlinear equations. Questions arising by the use of finite arithmetic on a computer, that is stability, accuracy and computational complexity, will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will learn the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione con un ampio spettro di conoscenze di base di tipo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare alcuni metodi in un linguaggio di programmazione in ambito scientifico # essere in grado di produrre semplici programmi al calcolatore, applicarli con senso critico anche a problemi semplici di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi di base di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e  sviluppare nello studente capacità di: problem solving, rappresentazione grafica di dati, discussione e confronto di risultati numerici.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali in aula ed in Laboratorio Informatico. Circa metà del corso si svolge al calcolatore, con interazione continua fra studenti e docente.

L’esame consiste di norma in una prova scritta ed una prova orale. La prova scritta consiste in tre tracce, due su argomenti teorici del corso che includono ognuna un esercizio da svolgere carta e penna, la terza riguarda argomenti svolti in Laboratorio e la programmazione di semplici pezzi di codice. Il compito è da svolgere in tre ore. La prova orale, che verte essenzialemente sullo scritto, verifica l’abilità di esporre in modo chiaro e rigoroso alcuni contenuti del corso. Se lo studente non supera la prova orale è tenuto a rifare la prova scritta.

Sono, inoltre, previste due prove di valutazione intermedia (esoneri) da svolgersi al calcolatore in Laboratorio Informatico, di norma si svolgeranno una verso fine Aprile e  la seconda subito dopo la fine del corso. Gli studenti che ottengono in queste prove una media del 20 sono esonerati dal sostenere la prova scritta fino alla sessione di settembre e potranno presentarsi al più due volte alla prova orale, utilizzando l’esonero.

Gli studenti dovranno prenotarsi sia all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Calcolo Numerico

Teoria degli errori: Insieme dei numeri di macchina. Rappresentazione dei numeri sul calcolatore: semplice e doppia precisione. Troncamento e Arrotondamento. Errore assoluto e relativo. Condizionamento di un problema. Propagazione degli errori e fenomeno di cancellazione. Analisi del costo computazionale. Metodo di Ruffini-Horner.
Elementi di algebra lineare: Operazioni fra matrici. Definizioni e proprietà di: matrici simmetriche, ortogonali e ortonormali; matrici a predominanza diagonale, matrici definite positive. Autovalori e autovettori: cenni. Norme vettoriali e norme indotte su matrici. Numero di condizionamento di una matrice.

Risoluzione di sistemi lineari: Studio del condizionamento di un sistema lineare. Teorema di perturbazione.

Metodi diretti: Fattorizzazioni di una matrice. Risoluzione di sistemi triangolari (inferiori e superiori). Aspetti implementativi. Matrici elementari. Metodo di eliminazione di Gauss e fattorizzazione LU. Pivot parziale e pivot totale. Analisi dell’errore e della stabilità degli algoritmi. Complessità del metodo di Gauss. Calcolo della matrice inversa. Risoluzione di sistemi tridiagonali: metodo di Thomas. Fattorizzazione di Cholesky. Cenni sulla risoluzione di sistemi sovradeterminati: le equazioni normali e il problema lineare dei minimi quadrati.
Metodi iterativi: definizioni e teoremi di convergenza per metodi iterativi lineari. Stime dell’errore. Criteri di stop e loro validità. Metodi di Jacobi e di Gauss-Seidel: risultati di convergenza. Metodo di rilassamento e stima del parametro ottimale
Calcolo degli zeri di funzioni non lineari: Metodo delle bisezioni: convergenza, criteri di stop. Metodi di iterazione funzionale o di punto fisso: studio della convergenza; criteri di arresto e stime dell'errore; ordine di convergenza. Metodo delle corde e metodo di Newton: interpretazione geometrica, proprietà e ordine di convergenza. Aspetti computazionali.
Per il Laboratorio: Principali comandi di manipolazione di vettori e matrici in ambiente Matlab; Elementi di grafica. Principali funzioni predefinite del Matlab (es: lu, qr, svd, eig, chol, etc). Cenni di programmazione: uso dei comandi for e while; M-file di tipo function e di tipo script. Algoritmi e programmi dei metodi implementati durante le lezioni in Laboratorio.

Programma delle lezioni (in English):

Foundations of Numerical Mathematics. Sources of Error in Computational Models; machine representation of numbers; the Floating-Point Number System: simple and double precision; rounding and truncating a real number; machine Floating-Point Operations.
Elements of matrix analysis. Operations with Matrices; trace, determinant, rank; special matrices: triangular, tridiagonal, banded, diagonally predominant, positive definite; eigenvalues and eigenvectors; spectral radius of a matrix; the Singular Value Decomposition (SVD); vector and matrix norms and their properties.
Solution of Linear Systems. Stability analysis of linear systems and the condition number of a matrix.
Direct Methods: Factorizations of a matrix. Solution of triangular systems and their implementation. The Gaussian Elimination Method (GEM) and LU Factorization: partial and total pivoting; stability analysis and computational complexity. Calculation of the inverse. Tridiagonal systems: Thomas algorithm. Symmetric and Positive Definite Matrices: Cholesky Factorization. Solution of rectangular systems: normal equations and the linear least square problem, QR factorization and SVD solution.
Iterative Methods: definitions and convergence of Linear Iterative Methods. Stopping criteria. Jacobi, Gauss-Seidel and Relaxation Methods: convergence results, estimate of relaxation optimal parameter; convergence results for some class of matrices.
Rootfinding methods for Nonlinear Equations. Bisection method: algorithm and convergence result. Fixed-Point Iterations for Nonlinear Equations: theorems of convergence, rate of convergence. Stopping Criteria and their validity. Methods of Chord, Secant and Newton: geometric meaning, properties and convergence order. Computational aspects.
For Computer Laboratory: Main commands in the Matlab environment for manipulating vectors and matrices and graphical representations. Main built-in functions in Matlab (eg: lu, qr, svd, eig, chol, etc..). How to write and apply M-files like “script” and “function”. Implementation of most of the methods studied in the theory.

  • D. Bini, M. Capovani, O. Menchi. Metodi Numerici per l’algebra lineare. Zanichelli, 1993. (Cap 1-2-3 Cenni, Cap.4, par.1—10,16—18, Cap.5, escluso par.5 e 7)
  • A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, Springer Italia, 2000.(Cap. 1-2-3 parti indicate a lezione; Cap.4, par.1,2; Cap.6,par. 2,3,7.)
  • Appunti forniti dal docente
  • PER MATLAB: Quarteroni-Saleri: Introduzione al Calcolo Scientifico, Esercizi e problemi risolti con Matlab, Springer – CAP 1 e appunti del docente.
CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Primo Semestre (dal 27/09/2021 al 17/12/2021)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Nella sezione MATERIALE DIDATTICO sono presenti le tracce dei progetti assegnati negli anni accademici precedenti.

In the section MATERIALE DIDATTICO you can find the Projects assigned in the past academic years for the final exam.

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Primo Semestre (dal 27/09/2021 al 17/12/2021)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Analisi Numerica

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2021/2022

Anno di corso 2

Semestre Secondo Semestre (dal 21/02/2022 al 03/06/2022)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

ANALISI I e II, GEOMETRIA I e II, ALGEBRA, PROGRAMMAZIONE

 Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici relativi ad argomenti dei primi anni del corso di Laurea. A tal fine, oltre a fornire gli algoritmi di calcolo, si dà rilievo all’analisi delle problematiche connesse all’uso della aritmetica finita. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.

Numerical Computing is the branch of mathematics that develops, analyzes and applies algorithms to solve with the aid of computer several problems included in basic courses of Mathematics (such as analysis, linear algebra, geometry). In this course, the focus is on numerical techniques for the solution of linear systems of any dimension and for rootfinding of nonlinear equations. Questions arising by the use of finite arithmetic on a computer, that is stability, accuracy and computational complexity, will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will learn the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione con un ampio spettro di conoscenze di base di tipo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare alcuni metodi in un linguaggio di programmazione in ambito scientifico # essere in grado di produrre semplici programmi al calcolatore, applicarli con senso critico anche a problemi semplici di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi di base di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e  sviluppare nello studente capacità di: problem solving, rappresentazione grafica di dati, discussione e confronto di risultati numerici.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali in aula ed in Laboratorio Informatico. Circa metà del corso si svolge al calcolatore, con interazione continua fra studenti e docente.

L’esame consiste di norma in una prova scritta ed una prova orale. La prova scritta consiste in tre tracce, due su argomenti teorici del corso che includono ognuna un esercizio da svolgere carta e penna, la terza riguarda argomenti svolti in Laboratorio e la programmazione di semplici pezzi di codice. Il compito è da svolgere in tre ore. La prova orale, che verte essenzialemente sullo scritto, verifica l’abilità di esporre in modo chiaro e rigoroso alcuni contenuti del corso. Se lo studente non supera la prova orale è tenuto a rifare la prova scritta.

Sono, inoltre, previste due prove di valutazione intermedia (esoneri) da svolgersi al calcolatore in Laboratorio Informatico, di norma si svolgeranno una verso fine Aprile e  la seconda subito dopo la fine del corso. Gli studenti che ottengono in queste prove una media del 24 sono esonerati dal sostenere la prova scritta fino alla sessione di settembre e potranno presentarsi al più due volte alla prova orale, utilizzando l’esonero.

Gli studenti dovranno prenotarsi sia all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Il MATERIALE DIDATTICO sarà reperibile nella sezione File del Team previsto per il Corso di Calcolo Numerico

Teoria degli errori: Insieme dei numeri di macchina. Rappresentazione dei numeri sul calcolatore: semplice e doppia precisione. Troncamento e Arrotondamento. Errore assoluto e relativo. Condizionamento di un problema. Propagazione degli errori e fenomeno di cancellazione. Analisi del costo computazionale. Metodo di Ruffini-Horner.
Elementi di algebra lineare: Operazioni fra matrici. Definizioni e proprietà di: matrici simmetriche, ortogonali e ortonormali; matrici a predominanza diagonale, matrici definite positive. Autovalori e autovettori: cenni. Norme vettoriali e norme indotte su matrici. Numero di condizionamento di una matrice.

Risoluzione di sistemi lineari: Studio del condizionamento di un sistema lineare. Teorema di perturbazione.

Metodi diretti: Fattorizzazioni di una matrice. Risoluzione di sistemi triangolari (inferiori e superiori). Aspetti implementativi. Matrici elementari. Metodo di eliminazione di Gauss e fattorizzazione LU. Pivot parziale e pivot totale. Analisi dell’errore e della stabilità degli algoritmi. Complessità del metodo di Gauss. Calcolo della matrice inversa. Risoluzione di sistemi tridiagonali: metodo di Thomas. Fattorizzazione di Cholesky. Cenni sulla risoluzione di sistemi sovradeterminati: le equazioni normali e il problema lineare dei minimi quadrati.
Metodi iterativi: definizioni e teoremi di convergenza per metodi iterativi lineari. Stime dell’errore. Criteri di stop e loro validità. Metodi di Jacobi e di Gauss-Seidel: risultati di convergenza. Metodo di rilassamento e stima del parametro ottimale
Calcolo degli zeri di funzioni non lineari: Metodo delle bisezioni: convergenza, criteri di stop. Metodi di iterazione funzionale o di punto fisso: studio della convergenza; criteri di arresto e stime dell'errore; ordine di convergenza. Metodo delle corde e metodo di Newton: interpretazione geometrica, proprietà e ordine di convergenza. Aspetti computazionali.
Per il Laboratorio: Principali comandi di manipolazione di vettori e matrici in ambiente Matlab; Elementi di grafica. Principali funzioni predefinite del Matlab (es: lu, qr, svd, eig, chol, etc). Cenni di programmazione: uso dei comandi for e while; M-file di tipo function e di tipo script. Algoritmi e programmi dei metodi implementati durante le lezioni in Laboratorio.

Programma delle lezioni (in English):

Foundations of Numerical Mathematics. Sources of Error in Computational Models; machine representation of numbers; the Floating-Point Number System: simple and double precision; rounding and truncating a real number; machine Floating-Point Operations.
Elements of matrix analysis. Operations with Matrices; trace, determinant, rank; special matrices: triangular, tridiagonal, banded, diagonally predominant, positive definite; eigenvalues and eigenvectors; spectral radius of a matrix; the Singular Value Decomposition (SVD); vector and matrix norms and their properties.
Solution of Linear Systems. Stability analysis of linear systems and the condition number of a matrix.
Direct Methods: Factorizations of a matrix. Solution of triangular systems and their implementation. The Gaussian Elimination Method (GEM) and LU Factorization: partial and total pivoting; stability analysis and computational complexity. Calculation of the inverse. Tridiagonal systems: Thomas algorithm. Symmetric and Positive Definite Matrices: Cholesky Factorization. Solution of rectangular systems: normal equations and the linear least square problem, QR factorization and SVD solution.
Iterative Methods: definitions and convergence of Linear Iterative Methods. Stopping criteria. Jacobi, Gauss-Seidel and Relaxation Methods: convergence results, estimate of relaxation optimal parameter; convergence results for some class of matrices.
Rootfinding methods for Nonlinear Equations. Bisection method: algorithm and convergence result. Fixed-Point Iterations for Nonlinear Equations: theorems of convergence, rate of convergence. Stopping Criteria and their validity. Methods of Chord, Secant and Newton: geometric meaning, properties and convergence order. Computational aspects.
For Computer Laboratory: Main commands in the Matlab environment for manipulating vectors and matrices and graphical representations. Main built-in functions in Matlab (eg: lu, qr, svd, eig, chol, etc..). How to write and apply M-files like “script” and “function”. Implementation of most of the methods studied in the theory.

  • D. Bini, M. Capovani, O. Menchi. Metodi Numerici per l’algebra lineare. Zanichelli, 1993. (Cap 1-2-3 Cenni, Cap.4, par.1—10,16—18, Cap.5, escluso par.5 e 7)
  • A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, Springer Italia, 2000.(Cap. 1-2-3 parti indicate a lezione; Cap.4, par.1,2; Cap.6,par. 2,3,7.)
  • Appunti forniti dal docente
  • PER MATLAB: Quarteroni-Saleri: Introduzione al Calcolo Scientifico, Esercizi e problemi risolti con Matlab, Springer – CAP 1 e appunti del docente.
CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2020/2021

Anno di corso 1

Semestre Primo Semestre (dal 21/09/2020 al 18/12/2020)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Nella sezione MATERIALE DIDATTICO sono presenti le tracce dei progetti assegnati negli anni accademici precedenti.

In the section MATERIALE DIDATTICO you can find the Projects assigned in the past academic years for the final exam.

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2020/2021

Anno di corso 1

Semestre Primo Semestre (dal 21/09/2020 al 18/12/2020)

Lingua ITALIANO

Percorso GENERALE (000)

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Nella sezione MATERIALE DIDATTICO sono presenti le tracce dei progetti assegnati negli anni accademici precedenti.

In the section MATERIALE DIDATTICO you can find the Projects assigned in the past academic years for the final exam.

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2020/2021

Anno di corso 2

Semestre Secondo Semestre (dal 22/02/2021 al 04/06/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

ANALISI I e II, GEOMETRIA I e II, ALGEBRA, PROGRAMMAZIONE

 Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici relativi ad argomenti dei primi anni del corso di Laurea. A tal fine, oltre a fornire gli algoritmi di calcolo, si dà rilievo all’analisi delle problematiche connesse all’uso della aritmetica finita. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.

Numerical Computing is the branch of mathematics that develops, analyzes and applies algorithms to solve with the aid of computer several problems included in basic courses of Mathematics (such as analysis, linear algebra, geometry). In this course, the focus is on numerical techniques for the solution of linear systems of any dimension and for rootfinding of nonlinear equations. Questions arising by the use of finite arithmetic on a computer, that is stability, accuracy and computational complexity, will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will learn the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione con un ampio spettro di conoscenze di base di tipo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare alcuni metodi in un linguaggio di programmazione in ambito scientifico # essere in grado di produrre semplici programmi al calcolatore, applicarli con senso critico anche a problemi semplici di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi di base di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e  sviluppare nello studente capacità di: problem solving, rappresentazione grafica di dati, discussione e confronto di risultati numerici.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali in aula ed in Laboratorio Informatico. Circa metà del corso si svolge al calcolatore, con interazione continua fra studenti e docente.

L’esame consiste di norma in una prova scritta ed una prova orale. La prova scritta consiste in tre tracce, due su argomenti teorici del corso che includono ognuna un esercizio da svolgere carta e penna, la terza riguarda argomenti svolti in Laboratorio e la programmazione di semplici pezzi di codice. Il compito è da svolgere in tre ore. La prova orale, che verte essenzialemente sullo scritto, verifica l’abilità di esporre in modo chiaro e rigoroso alcuni contenuti del corso. Se lo studente non supera la prova orale è tenuto a rifare la prova scritta.

Sono, inoltre, previste due prove di valutazione intermedia (esoneri) da svolgersi al calcolatore in Laboratorio Informatico, di norma si svolgeranno una verso fine Aprile e  la seconda subito dopo la fine del corso. Gli studenti che ottengono in queste prove una media del 24 sono esonerati dal sostenere la prova scritta fino alla sessione di settembre e potranno presentarsi al più due volte alla prova orale, utilizzando l’esonero.

Gli studenti dovranno prenotarsi sia all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Teoria degli errori: Insieme dei numeri di macchina. Rappresentazione dei numeri sul calcolatore: semplice e doppia precisione. Troncamento e Arrotondamento. Errore assoluto e relativo. Condizionamento di un problema. Propagazione degli errori e fenomeno di cancellazione. Analisi del costo computazionale. Metodo di Ruffini-Horner.
Elementi di algebra lineare: Operazioni fra matrici. Definizioni e proprietà di: matrici simmetriche, ortogonali e ortonormali; matrici a predominanza diagonale, matrici definite positive. Autovalori e autovettori: cenni. Norme vettoriali e norme indotte su matrici. Numero di condizionamento di una matrice.

Risoluzione di sistemi lineari: Studio del condizionamento di un sistema lineare. Teorema di perturbazione.

Metodi diretti: Fattorizzazioni di una matrice. Risoluzione di sistemi triangolari (inferiori e superiori). Aspetti implementativi. Matrici elementari. Metodo di eliminazione di Gauss e fattorizzazione LU. Pivot parziale e pivot totale. Analisi dell’errore e della stabilità degli algoritmi. Complessità del metodo di Gauss. Calcolo della matrice inversa. Risoluzione di sistemi tridiagonali: metodo di Thomas. Fattorizzazione di Cholesky. Cenni sulla risoluzione di sistemi sovradeterminati: le equazioni normali e il problema lineare dei minimi quadrati.
Metodi iterativi: definizioni e teoremi di convergenza per metodi iterativi lineari. Stime dell’errore. Criteri di stop e loro validità. Metodi di Jacobi e di Gauss-Seidel: risultati di convergenza. Metodo di rilassamento e stima del parametro ottimale
Calcolo degli zeri di funzioni non lineari: Metodo delle bisezioni: convergenza, criteri di stop. Metodi di iterazione funzionale o di punto fisso: studio della convergenza; criteri di arresto e stime dell'errore; ordine di convergenza. Metodo delle corde e metodo di Newton: interpretazione geometrica, proprietà e ordine di convergenza. Aspetti computazionali.
Per il Laboratorio: Principali comandi di manipolazione di vettori e matrici in ambiente Matlab; Elementi di grafica. Principali funzioni predefinite del Matlab (es: lu, qr, svd, eig, chol, etc). Cenni di programmazione: uso dei comandi for e while; M-file di tipo function e di tipo script. Algoritmi e programmi dei metodi implementati durante le lezioni in Laboratorio.

Programma delle lezioni (in English):

Foundations of Numerical Mathematics. Sources of Error in Computational Models; machine representation of numbers; the Floating-Point Number System: simple and double precision; rounding and truncating a real number; machine Floating-Point Operations.
Elements of matrix analysis. Operations with Matrices; trace, determinant, rank; special matrices: triangular, tridiagonal, banded, diagonally predominant, positive definite; eigenvalues and eigenvectors; spectral radius of a matrix; the Singular Value Decomposition (SVD); vector and matrix norms and their properties.
Solution of Linear Systems. Stability analysis of linear systems and the condition number of a matrix.
Direct Methods: Factorizations of a matrix. Solution of triangular systems and their implementation. The Gaussian Elimination Method (GEM) and LU Factorization: partial and total pivoting; stability analysis and computational complexity. Calculation of the inverse. Tridiagonal systems: Thomas algorithm. Symmetric and Positive Definite Matrices: Cholesky Factorization. Solution of rectangular systems: normal equations and the linear least square problem, QR factorization and SVD solution.
Iterative Methods: definitions and convergence of Linear Iterative Methods. Stopping criteria. Jacobi, Gauss-Seidel and Relaxation Methods: convergence results, estimate of relaxation optimal parameter; convergence results for some class of matrices.
Rootfinding methods for Nonlinear Equations. Bisection method: algorithm and convergence result. Fixed-Point Iterations for Nonlinear Equations: theorems of convergence, rate of convergence. Stopping Criteria and their validity. Methods of Chord, Secant and Newton: geometric meaning, properties and convergence order. Computational aspects.
For Computer Laboratory: Main commands in the Matlab environment for manipulating vectors and matrices and graphical representations. Main built-in functions in Matlab (eg: lu, qr, svd, eig, chol, etc..). How to write and apply M-files like “script” and “function”. Implementation of most of the methods studied in the theory.

  • D. Bini, M. Capovani, O. Menchi. Metodi Numerici per l’algebra lineare. Zanichelli, 1993. (Cap 1-2-3 Cenni, Cap.4, par.1—10,16—18, Cap.5, escluso par.5 e 7)
  • A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, Springer Italia, 2000.(Cap. 1-2-3 parti indicate a lezione; Cap.4, par.1,2; Cap.6,par. 2,3,7.)
  • Appunti forniti dal docente
  • PER MATLAB: Quarteroni-Saleri: Introduzione al Calcolo Scientifico, Esercizi e problemi risolti con Matlab, Springer – CAP 1 e appunti del docente.
CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2019/2020

Anno di corso 1

Semestre Primo Semestre (dal 30/09/2019 al 20/12/2019)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Nella sezione MATERIALE DIDATTICO sono presenti le tracce dei progetti assegnati negli anni accademici precedenti.

In the section MATERIALE DIDATTICO you can find the Projects assigned in the past academic years for the final exam.

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2019/2020

Anno di corso 1

Semestre Primo Semestre (dal 30/09/2019 al 20/12/2019)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Nella sezione MATERIALE DIDATTICO sono presenti le tracce dei progetti assegnati negli anni accademici precedenti.

In the section MATERIALE DIDATTICO you can find the Projects assigned in the past academic years for the final exam.

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 02/10/2018 al 21/12/2018)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Nella sezione MATERIALE DIDATTICO sono presenti le tracce dei progetti assegnati negli anni accademici precedenti.

In the section MATERIALE DIDATTICO you can find the Projects assigned in the past academic years for the final exam.

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Primo Semestre (dal 02/10/2018 al 21/12/2018)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

Conoscenze di analisi (integrali, equazioni differenziali). Conoscenze di base di Calcolo Numerico (risoluzione di sistemi lineari, metodi iterativi per zeri di funzione). Programmazione di base in Matlab.

Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici in scienze ed ingegneria. Argomenti principali sono: interpolazione, approssimazione, integrazione numerica, metodi per approssimazione di equazioni differenziali. Particolare enfasi viene data allo studio della accuratezza e stabilità dei metodi. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.


The course deals with some techniques for the efficient numerical solution of problems in science and engineering. Topics spanned are interpolation, approximation of functions, integration, differential equations. Stability, accuracy and computational complexity of the numerical methods will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will follow Laboratory lectures and will use the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione che prevede un ampio spettro di conoscenze di livello avanzato nell'ambito del calcolo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare molti dei metodi studiati in un ambiente di programmazione fra quelli attualmente piu' noti in ambito scientifico (Matlab) # essere in grado di usare software di calcolo scientifico ad un livello avanzato # sviluppare proprii codici al calcolatore, applicarli con senso critico anche a problemi di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi anche specialistici di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e sviluppare nello studente capacità di: problem solving, rappresentazione ed interpretazione grafica di dati, discussione e confronto di metodi e risultati numerici.

Abilità comunicative. La modalità d'esame prevede la scrittura di un report che raccolga i risultati di un progetto di Laboratorio assegnato.  In particolare, questa richiesta vuole sollecitare nello studente: l'abilità di presentare gli argomenti affrontati in modo chiaro (anche per iscritto), la capacità di comunicare problemi, idee e soluzioni, anche in vista della scrittura di una tesi di laurea di tipo magistrale.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, anche con riferimento ad artiicoli scientifici in inglese, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Il Corso prevede lezioni frontali in aula e circa 25 ore da svolgersi nel Laboratorio informatico. Le esercitazioni al calcolatore riguarderanno la programmazione in Matlab di molti metodi studiati in teoria, numerosi esercizi, alcuni esempi di carattere applicativo.

Computer classes are almost a third of the course and concern Matlab programming of most of the methods. Several exercises will be presented to experiment the key concepts of errors, convergence, order convergence and stability. Some examples of applicative problems will be also provided.

 

Si richiede che gli studenti sviluppino un progetto al calcolatore scelto fra i tre temi proposti dal docente alla fine del corso. Ogni progetto riguarda l'implementazione di alcuni metodi studiati in teoria e la loro applicazione ad alcuni problemi,  anche di tipo applicativo.  L'esame solo orale riguarda la discussione/ presentazione del progetto sul tema scelto e domande anche sulle restanti parti del programma.

Gli studenti dovranno prenotarsi all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Nella sezione MATERIALE DIDATTICO sono presenti le tracce dei progetti assegnati negli anni accademici precedenti.

In the section MATERIALE DIDATTICO you can find the Projects assigned in the past academic years for the final exam.

Programma dettagliato delle lezioni:
A) Interpolazione ed approssimazione: Interpolazione polinomiale: matrice di Vandermonde e polinomio di Lagrange. Stima dell’errore di interpolazione su nodi equidistanti e su nodi di Chebychev. Fenomeno di Runge. Polinomio interpolante di Newton. Differenze divise e loro proprietà. Interpolazione a tratti: costruzione della spline cubica e sue proprietà di convergenza. Approssimazione di dati nel senso dei minimi quadrati: caso lineare ed equazioni normali. Interpolazione trigonometrica: trasformata discreta di Fourier (DFT, FFT) e sue applicazioni.
B) Formule di quadratura: Formule interpolatorie: stima dell’errore, grado di precisione, proprietà di stabilità. Formule di Newton-Cotes. Metodo dei trapezi e di Cavalieri-Simpson e loro formule composte. Estrapolazione di Richardson e controllo automatico dell’errore. Cenni sui polinomi ortogonali e loro proprietà. Formule gaussiane: grado massimo di precisione, stima dell’errore, calcolo dei nodi e dei pesi per le formule di Legendre, Chebychev, Laguerre; formule di Gauss-Radau e Gauss-Lobatto.
C) Metodi numerici per Equazioni Differenziali Ordinarie a Valori Iniziali (Pb. di Cauchy):
Metodi espliciti a un passo, errore di troncamento, consistenza. Convergenza e zero-stabilità. Metodi di Eulero esplicito ed implicito. Metodo dei Trapezi e di Heun. Assoluta stabilità. Equazione test e regioni di assoluta stabilità. Richiami su equazioni alle differenze lineari a coefficienti costanti. Metodi Lineari Multistep: definizione, errore di troncamento, condizioni di ordine. Metodo del Midpoint, metodo di Simpson. Zero-stabilità e convergenza. Prima e seconda barriera di Dahlquist. Metodi di Adams espliciti ed impliciti, metodi di Nystrom e metodi BDF. Assoluta stabilità di un metodo Multistep. Definizione e calcolo del boundary locus. Cenni sui metodi predittore-correttore e sulle tecniche adattive.
Metodi Runge-Kutta. Metodi espliciti: consistenza, condizioni di ordine, convergenza, funzione di stabilità, assoluta stabilità. Metodi impliciti: costruzione delle formule gaussiane come metodi di collocazione. Problemi stiff. Risoluzione di sistemi di equazioni.

 

Programma delle lezioni (in inglese):
A) Interpolation and Approximation. Polynomial Interpolation: canonical basis and Vandermonde system. Lagrange basis. The Interpolation Error: equally spaced nodes, Chebychev nodes and Runge’s counter-example. Stability of Polynomial Interpolation and Lebesgue constant. Newton Form of the Interpolating Polynomial. Divided Differences and their properties. Piecewise Lagrange Interpolation: Hermite Interpolation, approximation by Splines. Interpolatory Cubic Splines and their properties. Linear and nonlinear least square problems. Trigonometric interpolation: Discrete Fourier Transform (DFT). Fast Fourier Transform (FFT): properties and applications.1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente
B) Numerical Integration. Basic Quadrature Formulae: Midpoint or Rectangle formula, Trapezoidal formula. Interpolatory Quadrature: definition, properties, order precision. An example: the Cavalieri-Simpson Formula. Newton-Cotes Formulae. Composite Newton-Cotes Formulae. Composite Trapezoidal and Simpson methods and their convergence. Richardson Extrapolation and error estimate. Orthogonal Polynomials: definition and properties. Some examples: Chebyshev and Legendre polynomials. Gaussian Integration: high order, error estimate, construction of nodes and weights by eigenvalues/eigenvectors computation. Gauss-Legendre and Gauss-Chebychev methods. Integration over Unbounded Intervals: Gauss-Laguerre and Gauss-Hermite formulae. Pre-fixed nodes: Gauss-Lobatto and Gauss-Radau.
C) Numerical Solution of Ordinary Differential Equations (ODE) The Cauchy Problem. One-Step Numerical Methods: definition of explicit and implicit schemes, truncation error, the zero-Stability. Convergence Analysis and order of convergence. Euler, Trapezoidal and Heun methods. The Absolute Stability: test equation, regions of absolute stability and stepsize restrictions. Difference Equations. Linear Multistep Methods: Midpoint and Simpson methods. Consistency and order conditions, stability polynomials. Zero-stability and the Root Condition. First Dahlquist’s barrier. Convergence Analysis. Absolute Stability and Strong Root Condition. Second Dahlquist’s barrier. Explicit and Implicit Adams methods. BDF methods. Predictor-Corrector Methods. Boundary locus to find stability regions. Runge-Kutta Methods. Derivation of an Explicit RK Method. Order conditions, convergence, stability function and absolute stability. Implicit RK Methods: construction as collocation methods on gaussian nodes. High order and A-stability properties. Stiff Problems. Systems of ODEs.

1. R. Bevilacqua, D. Bini, M. Capovani, O. Menchi. Metodi numerici. Zanichelli Ed. 1997.
2. A. Quarteroni, R. Sacco, F. Saleri – Matematica Numerica, 2a Ed. Springer, 2000
3. Hairer-Wanner Solving Ordinary Differential Equations vol.I-II, 2nd Ed. Springer
4. Altri appunti forniti dal docente

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2018/2019

Anno di corso 2

Semestre Secondo Semestre (dal 25/02/2019 al 31/05/2019)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

ANALISI I e II, GEOMETRIA I e II, ALGEBRA, PROGRAMMAZIONE

 Il corso consiste nello studio di metodi numerici per la risoluzione di alcuni problemi matematici relativi ad argomenti dei primi anni del corso di Laurea. A tal fine, oltre a fornire gli algoritmi di calcolo, si dà rilievo all’analisi delle problematiche connesse all’uso della aritmetica finita. Si prevedono esercitazioni al calcolatore per sperimentare i vari concetti visti nella parte teorica del corso e per l’implementazione dei metodi numerici studiati. Per tale scopo l’ambiente di lavoro sarà il programma di Calcolo Scientifico Matlab.

Numerical Computing is the branch of mathematics that develops, analyzes and applies algorithms to solve with the aid of computer several problems included in basic courses of Mathematics (such as analysis, linear algebra, geometry). In this course, the focus is on numerical techniques for the solution of linear systems of any dimension and for rootfinding of nonlinear equations. Questions arising by the use of finite arithmetic on a computer, that is stability, accuracy and computational complexity, will be carefully analysed. Part of the course consists in the implementation of the methods, in order to demonstrate their performances on examples and counterexamples on a computer. For this goal, the students will learn the MatLab program for scientific calculus.

Conoscenze e comprensione. Possedere una solida preparazione con un ampio spettro di conoscenze di base di tipo numerico.

Capacità di applicare conoscenze e comprensione: # Essere capaci di implementare alcuni metodi in un linguaggio di programmazione in ambito scientifico # essere in grado di produrre semplici programmi al calcolatore, applicarli con senso critico anche a problemi semplici di tipo applicativo # essere capaci di leggere e comprendere, in modo autonomo, testi di base di Calcolo Numerico

Autonomia di giudizio. Il corso sarà svolto in modo da favorire e  sviluppare nello studente capacità di: problem solving, rappresentazione grafica di dati, discussione e confronto di risultati numerici.

Abilità comunicative. La presentazione degli argomenti sarà svolta in modo da consentire l’acquisizione di una buona capacità di comunicare problemi, idee e soluzioni.

Capacità di apprendimento. Saranno indicati argomenti da approfondire, strettamente correlati con l’insegnamento, al fine di stimolare la capacità di apprendimento autonomo dello studente.

Lezioni frontali in aula ed in Laboratorio Informatico. Circa metà del corso si svolge al calcolatore, con interazione continua fra studenti e docente.

L’esame consiste di norma in una prova scritta ed una prova orale. La prova scritta consiste in tre tracce, due su argomenti teorici del corso che includono ognuna un esercizio da svolgere carta e penna, la terza riguarda argomenti svolti in Laboratorio e la programmazione di semplici pezzi di codice. Il compito è da svolgere in tre ore. La prova orale, che verte essenzialemente sullo scritto, verifica l’abilità di esporre in modo chiaro e rigoroso alcuni contenuti del corso. Se lo studente non supera la prova orale è tenuto a rifare la prova scritta.

Sono, inoltre, previste due prove di valutazione intermedia (esoneri) da svolgersi al calcolatore in Laboratorio Informatico, di norma si svolgeranno una verso fine Aprile e  la seconda subito dopo la fine del corso. Gli studenti che ottengono in queste prove una media del 24 sono esonerati dal sostenere la prova scritta fino alla sessione di settembre e potranno presentarsi al più due volte alla prova orale, utilizzando l’esonero.

Gli studenti dovranno prenotarsi sia all'esame utilizzando esclusivamente le modalità on-line previste dal sistema VOL

Teoria degli errori: Insieme dei numeri di macchina. Rappresentazione dei numeri sul calcolatore: semplice e doppia precisione. Troncamento e Arrotondamento. Errore assoluto e relativo. Condizionamento di un problema. Propagazione degli errori e fenomeno di cancellazione. Analisi del costo computazionale. Metodo di Ruffini-Horner.
Elementi di algebra lineare: Operazioni fra matrici. Definizioni e proprietà di: matrici simmetriche, ortogonali e ortonormali; matrici a predominanza diagonale, matrici definite positive. Autovalori e autovettori: cenni. Norme vettoriali e norme indotte su matrici. Numero di condizionamento di una matrice.

Risoluzione di sistemi lineari: Studio del condizionamento di un sistema lineare. Teorema di perturbazione.

Metodi diretti: Fattorizzazioni di una matrice. Risoluzione di sistemi triangolari (inferiori e superiori). Aspetti implementativi. Matrici elementari. Metodo di eliminazione di Gauss e fattorizzazione LU. Pivot parziale e pivot totale. Analisi dell’errore e della stabilità degli algoritmi. Complessità del metodo di Gauss. Calcolo della matrice inversa. Risoluzione di sistemi tridiagonali: metodo di Thomas. Fattorizzazione di Cholesky. Cenni sulla risoluzione di sistemi sovradeterminati: le equazioni normali e il problema lineare dei minimi quadrati.
Metodi iterativi: definizioni e teoremi di convergenza per metodi iterativi lineari. Stime dell’errore. Criteri di stop e loro validità. Metodi di Jacobi e di Gauss-Seidel: risultati di convergenza. Metodo di rilassamento e stima del parametro ottimale
Calcolo degli zeri di funzioni non lineari: Metodo delle bisezioni: convergenza, criteri di stop. Metodi di iterazione funzionale o di punto fisso: studio della convergenza; criteri di arresto e stime dell'errore; ordine di convergenza. Metodo delle corde e metodo di Newton: interpretazione geometrica, proprietà e ordine di convergenza. Aspetti computazionali.
Per il Laboratorio: Principali comandi di manipolazione di vettori e matrici in ambiente Matlab; Elementi di grafica. Principali funzioni predefinite del Matlab (es: lu, qr, svd, eig, chol, etc). Cenni di programmazione: uso dei comandi for e while; M-file di tipo function e di tipo script. Algoritmi e programmi dei metodi implementati durante le lezioni in Laboratorio.

Programma delle lezioni (in English):

Foundations of Numerical Mathematics. Sources of Error in Computational Models; machine representation of numbers; the Floating-Point Number System: simple and double precision; rounding and truncating a real number; machine Floating-Point Operations.
Elements of matrix analysis. Operations with Matrices; trace, determinant, rank; special matrices: triangular, tridiagonal, banded, diagonally predominant, positive definite; eigenvalues and eigenvectors; spectral radius of a matrix; the Singular Value Decomposition (SVD); vector and matrix norms and their properties.
Solution of Linear Systems. Stability analysis of linear systems and the condition number of a matrix.
Direct Methods: Factorizations of a matrix. Solution of triangular systems and their implementation. The Gaussian Elimination Method (GEM) and LU Factorization: partial and total pivoting; stability analysis and computational complexity. Calculation of the inverse. Tridiagonal systems: Thomas algorithm. Symmetric and Positive Definite Matrices: Cholesky Factorization. Solution of rectangular systems: normal equations and the linear least square problem, QR factorization and SVD solution.
Iterative Methods: definitions and convergence of Linear Iterative Methods. Stopping criteria. Jacobi, Gauss-Seidel and Relaxation Methods: convergence results, estimate of relaxation optimal parameter; convergence results for some class of matrices.
Rootfinding methods for Nonlinear Equations. Bisection method: algorithm and convergence result. Fixed-Point Iterations for Nonlinear Equations: theorems of convergence, rate of convergence. Stopping Criteria and their validity. Methods of Chord, Secant and Newton: geometric meaning, properties and convergence order. Computational aspects.
For Computer Laboratory: Main commands in the Matlab environment for manipulating vectors and matrices and graphical representations. Main built-in functions in Matlab (eg: lu, qr, svd, eig, chol, etc..). How to write and apply M-files like “script” and “function”. Implementation of most of the methods studied in the theory.

  • D. Bini, M. Capovani, O. Menchi. Metodi Numerici per l’algebra lineare. Zanichelli, 1993. (Cap 1-2-3 Cenni, Cap.4, par.1—10,16—18, Cap.5, escluso par.5 e 7)
  • A. Quarteroni, R. Sacco, F. Saleri, Matematica Numerica, Springer Italia, 2000.(Cap. 1-2-3 parti indicate a lezione; Cap.4, par.1,2; Cap.6,par. 2,3,7.)
  • Appunti forniti dal docente
  • PER MATLAB: Quarteroni-Saleri: Introduzione al Calcolo Scientifico, Esercizi e problemi risolti con Matlab, Springer – CAP 1 e appunti del docente.
CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Secondo Semestre (dal 26/02/2018 al 25/05/2018)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

ANALISI NUMERICA (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Secondo Semestre (dal 26/02/2018 al 25/05/2018)

Lingua ITALIANO

Percorso GENERALE (000)

Sede Lecce

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2017/2018

Anno di corso 2

Semestre Secondo Semestre (dal 26/02/2018 al 25/05/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2016/2017

Anno di corso 1

Semestre Secondo Semestre (dal 27/02/2017 al 26/05/2017)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 42.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2016/2017

Anno di corso 2

Semestre Secondo Semestre (dal 27/02/2017 al 26/05/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 63.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2015/2016

Anno di corso 1

Semestre Secondo Semestre (dal 29/02/2016 al 31/05/2016)

Lingua ITALIANO

Percorso APPLICATIVO (022)

Sede Lecce

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2015/2016

Anno di corso 2

Semestre Secondo Semestre (dal 29/02/2016 al 31/05/2016)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 29/05/2015)

Lingua

Percorso APPLICATIVO (022)

Sede Lecce - Università degli Studi

ANALISI NUMERICA (MAT/08)
CALCOLO NUMERICO

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2014/2015

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2015 al 29/05/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

CALCOLO NUMERICO (MAT/08)
ANALISI NUMERICA

Corso di laurea MATEMATICA

Settore Scientifico Disciplinare MAT/08

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso APPLICATIVO (022)

Sede Lecce - Università degli Studi

ANALISI NUMERICA (MAT/08)

Pubblicazioni

ORCID Ivonne Sgura:  http://orcid.org/0000-0001-9207-5832

LIST OF PUBLICATIONS: Total 90 +13 (update 2021-07-15)

71 Articles in international peer review journals ; 4 Articles in italian journals (with *); 10 Publications in volumes (with referee process) ; 5 Conference Proceedings (with referee process) ; 13 Technical Reports, Magazines, ArXiv

The full list of publications (time descending order) includes separate lists for :  Articles in international and national journals, Volume chapters, Conference Proceedings, Reports (without peer review process)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Articles in journals 75 (update 2021-07-15)

2021

  1. - J. Sarria-Gonzalez, I. Sgura, M. R. Ricard - Bifurcations in twinkling patterns for the Lengyel-Epstein reaction-diffusion model, International Journal of Bifurcation and Chaos World Scientific Publishing Company, Accepted April 26, 2021
  2. - M. Frittelli, A. Madzvamuse, I. Sgura - Bulk-surface virtual element method for systems of PDEs in two-space dimensions, Numerische Mathematik, Springer Nature Eds. 147 (2021) 305–348    doi.org/10.1007/s00211-020-01167-3
  3. - B. Bozzini, M. C. D’Autilia, C. Mele, I. Sgura -Fourier analysis of an electrochemical phase formation model enables the rationalization of zinc-anode battery dynamics, Applications in Engineering Science, Vol. 5 (2021) 100033, doi.org/10.1016/j.apples.2020.100033
  4. - D. Lacitignola, I. Sgura, B. Bozzini, Turing-Hopf patterns in a morphochemical model for electrodeposition with cross-diffusion, Applications in Engineering Science, Vol. 5 (2021) 100034,  doi.org/10.1016/j.apples.2020.100034

 

2020

  1. M. C. D'Autilia, I. Sgura, V. Simoncini, Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications, Computers and Mathematics with Applications CAMWA, 79 (2020) 2067–2085, doi.org/10.1016/j.camwa.2019.10.020

2019

  1. - D. Lacitignola ,  I. Sgura, B Bozzini , Ts. Dobrovolska, I. Krastev- Spiral waves on the sphere for an alloy electrodeposition model, Commun Nonlinear Sci Numer Simulat 79 (2019) 104930, doi.org/10.1016/j.cnsns.2019.104930
  2. - M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman - Preserving invariance properties of reaction-diffusion systems on stationary surfaces, IMA Journal of Numerical Analysis , 39, Issue 1, 25 January 2019) 235–270, DOI: 10.1093/imanum/drx058
  3. - I. Sgura, A.S. Lawless, B. Bozzini - Parameter estimation for a morphochemical reaction-diffusion model of electrochemical pattern formation, Inverse Problems in Science and Engineering, 27 (5) (2019) ISSN: 1741-5977 (Print) 1741-5985 (Online) 618-647, DOI: doi.org/10.1080/17415977.2018.1490278
  4. - (*) B. Bozzini, C. Mele, M.C. D'Autilia, I. Sgura - Dynamics of zinc-air battery anodes: An electrochemical and optical study complemented by mathematical modelling, La Metallurgia Italiana (2019) 111(7-8), 33-40, ISSN: 002608

2018

  1. - M. Frittelli, I. Sgura - Virtual Element Method for the Laplace-Beltrami equation on surfaces, ESAIM: Mathematical Modelling and Numerical Analysis, 52, n.3 (2018) 965-993 DOI: 10.1051/m2an/2017040 (arXiv:1612.02369 [math.NA] Dec. 7, 2017)
  2. - B. Bozzini, M. Amati, T. Dobrovolska, L. Gregoratti, I. Krastev, I. Sgura, A. Taurino, and M. Kiskinova -Depth-Dependent Scanning Photoelectron Microspectroscopy Unravels the Mechanism of Dynamic Pattern Formation in Alloy Electrodeposition, Journal of Physical Chemistry C, 122 (28) (19 July 2018) 15996—16007  DOI: 10.1021/acs.jpcc.8b01267
  3. - M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman - Numerical preservation of velocity induced invariant regions for reaction–diffusion systems on evolving surfaces, Journal of Scientific Computing 77, n.2 (2018) 971--1000 (Open Access), ISSN 1573-7691, DOI: doi.org/10.1007/s10915-018-0741-7
  4. -    D. Lacitignola, B. Bozzini, R. Peipmann and I. Sgura -  Cross-diffusion effects on a morphochemical model for electrodeposition, Applied Mathematical Modelling,  57 (2018) 492—513 DOI: doi.org/10.1016/j.apm.2018.01.005

2017

  1. - M. Frittelli, A. Madzvamuse, I. Sgura, C. Venkataraman - Lumped finite elements for reaction–cross-diffusion systems on stationary surfaces, (Open Access) Computers and Mathematics with Applications, 74 (12) (2017) 3008—3023 DOI:dx.doi.org/10.1016/j.camwa.2017.07.044
  2. - M. C. D'Autilia, I. Sgura, B. Bozzini - Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach, Inverse Problems, 33 (12) (2017), Article n. 124009 (23pp) DOI:dx.doi.org/10.1088/1361-6420/aa9834
  3. - I. Sgura and B. Bozzini - XRF map identification problems based on a PDE electrodeposition model, Journal of Physics D: Applied Physics, 50 (2017) 154002 DOI: dx.doi.org/10.1088/1361-6463/aa5a1f
  4. - M. Destrade, G. Saccomandi, I. Sgura - Methodical fitting for mathematical models of rubber-like materials, Proceedings Royal Soc. A, 473 (2017) 20160811 DOI: dx.doi.org/10.1098/rspa.2016.0811  (arXiv:1608.05801)
  5. - D. Lacitignola, B. Bozzini, M. Frittelli, I. Sgura, Turing pattern formation on the sphere for a morphochemical reaction-diffusion model for electrodeposition, Commun Nonlinear Sci Numer Simul, 48 (2017) 484–508 DOI: dx.doi.org/10.1016/j.cnsns.2017.01.008

2016

  1. - G. Settanni, I. Sgura Devising efficient numerical methods for oscillating patterns inreaction–diffusion systems, J. of Computational and Applied Mathematics, Vol. 292 (2016) 674--693, DOI: 10.1016/j.cam.2015.04.044, ISSN: 03770427

2015

  1. -  B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, I. Sgura Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers and Mathematics with Applications, Vol. 70, Issue 8 (2015) 1948--1969, DOI: 10.1016/j.camwa.2015.08.019, ISSN: 08981221
  2. - B. Bozzini, M. Amati, L. Gregoratti, D. Lacitignola, I. Sgura, I. Krastev, Ts. Drobovolska  Intermetallics as key to spiral formation in In-Co electrodeposition. A study based on photoelectron microspectroscopy, mathematical modelling and numerical approximations, Journal of Physics D: Applied Physics Vol. 48, Issue 39 (2015) Art. N. 39550 DOI: 10.1088/0022-3727/48/39/395502, ISSN: 00223727
  3. - A. Gianoncelli, I. Sgura, P. Bocchetta, D. Lacitignola B. Bozzini, High-lateral resolution X-ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts, X-Ray Spectrometry, John Wiley and Sons Ltd Eds, 44, Issue 4 (2015) 263-275, DOI: 10.1002/xrs.2617, ISSN: 00498246
  4. - D. Lacitignola, B. Bozzini, I. Sgura Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Europ. J. of Applied Mathematics vol. 26, Issue 2, Cambridge University Press  (2015) 143–173  DOI: 10.1017/S0956792514000370 ISSN: 09567925

2014

  1. - M. Destrade, R.W. Ogden, I. Sgura, L. Vergori, Straightening wrinkles. Journal of the Mechanics and Physics of Solids, 65 (2014) 1–11 Elsevier DOI: dx.doi.org/10.1016/j.jmps.2014.01.001i
  2. -  M. Destrade, R.W. Ogden, I. Sgura, L. Vergori, Straightening: Existence, uniqueness and stabilityProceedings of the Royal Society A 470 (no. 2164):20130709 (2014) 1--20 DOI: dx.doi.org/10.1098/rspa.2013.0709
  3. - D. Lacitignola, B. Bozzini, I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves. Acta Applicandae Mathematicae, Springer Eds vol. 132, Issue 1 (2014) 377--389, ISSN: 1572-9036, doi: 10.1007/s10440-014-9910-3
  4. - D. Lacitignola, G. Saccomandi, I. Sgura, Parametric Resonance in a Mesoscopic Discrete DNA Model. Acta Applicandae Mathematicae, vol. 132, Issue 1 (2014) 391--404, ISSN: 1572-9036, doi: 10.1007/s10440-014-9925-9
  5. - I. Sgura – A finite difference approach for the numerical solution of non-smooth problems for Boundary Value ODEs, Mathematics and Computers in Simulation, Vol.95 (2014) 146–-162, DOI:10.1016/j.matcom.2012.07.015
  6. - Bozzini, B., Gianoncelli, A., Mele, C., Abyaneh, M.K., Jezersěk, D., Sgura, I., Kiskinova, M. Pulse-Plating of Mn-Cu-ZnO for Supercapacitors: A Study Based on Soft X-ray Fluorescence and Absorption Microspectroscopy ChemElectroChem, Vol. 1, Issue 7 (2014) 1161—1172, ISSN: 2196-0216, DOI: 10.1002/celc.201402040  WOS:000340523000009, 2-s2.0-84929076988
  7. - B. Bozzini, A. Gianoncelli, C. Mele, I. Sgura, M. Kiskinova, Electrodeposition of a Mn–Cu–ZnO Hybrid material for supercapacitors: a soft XRay fluorescence and absorption microspectroscopy study, ChemElectroChem, vol. 1, Issue 2 (2014) 392--399 DOI: 10.1002/celc.201300099 ISSN: 2196-0216 WOS:000338295400016 scopus: 2-s2.0-84946541862

2013

  1. - A. Gianoncelli, B. Kaulich , M. Kiskinova, C. Mele, M. Prasciolu, I. Sgura  and B. BozziniFabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurement, Journal of Physics: Conference Series, 425 (PART 18) (2013) art. no. 182010  DOI: 10.1088/1742-6596/425/18/182010
  2. - B. Bozzini, D. Lacitignola, I. Sgura - Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, Jour. Solid State Electrochemistry, Springer-Verlag Berlin Heidelberg Vol. 17, Issue: 2 (2013) 467-479 , doi:10.1007/s10008-012-1945-7

2012

  1. - B. Bozzini, D. Lacitignola, C. Mele, I. Sgura Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reaction-diffusion approach Acta Applicandae Mathematicae, Springer Sc. Edit. , Vol. 122, Issue 1, (2012) 53--68, ISSN: 0167-8019, DOI: 10.1007/s10440-012-9725-z
  2. - I. Sgura , B. Bozzini, D. Lacitignola Numerical approximation of Turing patterns in electrodeposition by ADI methods, J. Comput. and Applied Mathematics Vol. 236, Issue 16 (2012) 4132--4147 doi:10.1016/j.cam.2012.03.013
  3. - (*) B. Bozzini, D. Lacitignola, C. Mele, I. Sgura Morphogenesis in metal electrodeposition, Note di Matematica, Vol. 32 (2012) 7--46 DOI:10.1285/i15900932v32n1p7  Scopus : 2-s2.0-84869494442

2011

  1. - B. Bozzini, D. Lacitignola, I. Sgura  Frequency as the greenest additive for metal plating: mathematical and experimental study of forcing voltage effects on electrochemical growth dynamics Int. J. Electrochem. Sci., 6 (2011) 4553 - 4571
  2. - B. Bozzini, S. Maci,  I. Sgura, R. Lo Presti, E. Simonetti- Numerical modelling of MCFC cathode degradation in terms of morphological variations  Intern. Journal of Hydrogen Energy Vol.36 Issue:16 (2011) 10403--10413, DOI: 10.1016/j.ijhydene.2010.07.110  IF 3.895
  3. - B. Bozzini, M. Guerrieri, F. Capotondi, I. Sgura, E. Tondo, Electrochemical Preparation of Particles for X-Ray Free Electron Laser Based Diffractive Imaging,  International Journal of Electrochemical Science.Vol. 6 Issue: 7 (2011) 2609-2631
  4. - R. Ogden, G. Saccomandi, I. Sgura – Phenomenological modeling of DNA overstretchingJournal of Nonlinear Mathematical Physics ISSN: 1402-9251 Vol. 18, Suppl. 2 (2011)  411--427
  5. - B. Bozzini, D. Lacitignola, I. Sgura Travelling waves in a Reaction-Diffusion Model for Electrodeposition , Mathematics and Computers in Simulation Vol 81, Issue 5 (2011) 1027--1044, DOI:10.1016/j.matcom.2010.10.008

2010

  1. - G. Giovannelli, L. D'Urzo, G. Maggiulli, S. Natali, C. Pagliara, I. Sgura and B. Bozzini - Cathodic Chloride Extraction Treatment of a Late Bronze-Age Artefact affected by Bronze Disease in Room-Temperature Ionic Liquid (EMI-TFSI), J. of Solid State Electrochem. Vol. 14 (2010) 479-–494,  DOI: 10.1007/s10008-009-0912-4,
  2. - B. Bozzini, D. Lacitignola, I. SguraMorphological spatial patterns in a reaction diffusion model for metal growth, Mathematical Biosciences and Engineering, Vol. 7, n. 2 (2010) 237 --258  DOI:doi:10.3934/mbe.2010.7.237,
  3. - B. Bozzini, A. Gianoncelli, B.Kaulich, M. Kiskinova, M. Prasciolu, and I. Sgura -Metallic Plate Corrosion and Uptake of Corrosion Products by Nafion in Polymer Electrolyte Membrane Fuel Cells, ChemSusChem Wiley-VCH Verlag, Vol. 3 (7), (2010) 846—850
  4. - B. Bozzini, D. Lacitignola, I. Sgura, C. Mele, M. Marchitto, A. Ciliberto -  Prediction of Morphological Properties of Smart-Coatings for Cr Replacement, Based on Mathematical Modelling, Advanced Materials Research Vol. 138 (2010) 93--106 (2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AMR.138.93

2009

  1. - B. Bozzini, L. D’Urzo, D. Lacitignola, C.Mele, I. Sgura, E. Tondo, “An investigation into the dynamics of Au electrodeposition based on the analysis of SERS spectral time series”, Trans. of The Institute of Metal Finishing, ISSN: 0020-2967. vol. 87, No 4 (2009) 193-200
  2. - B. Bozzini, I. Sgura – A Mathematical Model for the Corrosion of Metallic Bipolar Plates in PEM Fuel Cells: Numerical and Experimental Issues, SIAM Journal on Applied Math. (SIAM), Philadelphia, PA (USA), Vol. 70 No 2 (2009) 579--599, DOI. 10.1137/080721054
  3. - B. Bozzini, L. D'Urzo, A. Gianoncelli, B. Kaulich, M. Prasciolu, I. Sgura, E. Tondo, M. Kiskinova, An in situ synchrotron-based soft X-ray microscopy investigation of Ni electrodeposition in a thin-layer cell, Journal of Physical Chemistry C, Vol. 113, No 22 (2009)  9783--9787 IF: 3.396  DOI: 10.1021/jp901528g
  4. - M. Destrade, G. Saccomandi, I. Sgura - Inhomogeneous shear of orthotropic incompressible non-linearly elastic solids: singular solutions and biomechanical interpretation, Intern. Journal of Engin. Science, 47 (2009) 1170–-1181, doi:10.1016/j.ijengsci.2008.12.016
  5. - G. Saccomandi, I. Sgura, L. Filograna, M. Racioppi, A Simple Model of Nonlinear Viscoelasticity Taking into Account Stress Relaxation, Acta Mechanica, 204 (2009) 21–36 Springer Wien DOI:10.1007/s00707-008-0033-7  

2008

  1. - B. Bozzini, I. Sgura –A Class of Mathematical Models for Alternated-Current Electrochemical Measurements Accounting for Non-linear Effects, Nonlinear Analysis Series B: Real World Applications, Vol. 9, N.2 (2008) 412—429, Elsevier Ltd Amsterdam (The Netherlands), doi:10.1016/j.nonrwa.2006.11.009
  2. - B. Bozzini, D. Lacitignola, I. Sgura – A Reaction-Diffusion Model of Spatial Pattern Formation in Electrodeposition, Journal of Physics: Conference Series 96, (2008) -, pp. 012051. DOI:10.1088/1742-6596/96/1/012051
  3. - B. Bozzini, I. Sgura -A Computational Approach to Morphological Control in Electrodeposition by Molecular Targeting, Computational Materials Science,Vol. 42, N. 3 (2008) 394-406, Elsevier B.V. New York, NY (USA)      doi:10.1016/j.commatsci.2007.08.002  

2007

  1. - R.W. Ogden, G. Saccomandi, I. Sgura Computational Aspects of Worm-Like-Chain Interpolation Formulas, Computers & Mathematics with Application, Vol. 53 (2007) 576--586, Elsevier Science Ltd (Pergamon), Amsterdam (The Netherlands). doi:10.1016/j.camwa.2006.02.024
  2. - J. Merodio, G. Saccomandi, I. Sgura The Rectilinear Shear of Fiber Reinforced Materials, Int. Journ. Nonlinear Mechanics, Vol.42 (2007) 342--354, Elsevier B.V. Amsterdam (The Netherlands).
  3. - P. Amodio, I. Sgura High Order Generalized Upwind Schemes and the Numerical Solution of Singular Perturbation Problem BIT Numerical Mathematics, Vol.47, No. 2 (2007) 241--257, Springer Netherlands, Dordrecht. DOI: 10.1007/s10543-007-0125-0
  4. - (*) B. Bozzini, I. Sgura Parameter Functional Dependence in an Electro-chemical Model: Theoretical and Computational Issues, Note di Matematica, vol.27, N.1 (2007)  39--52, Università del Salento, Liguori Editore S.R.L. Napoli, (Italy) Scopus: 2-s2.0-78651340236

2006

  1. - R.W. Ogden, G. Saccomandi, I. Sgura On Worm-Like Chain Models within the Three-dimensional Continuum Mechanics Framework, Proceedings Royal Soc. A 462 (2006) 749--768, The Royal Soc. Pub, London (GB), DOI: 10.1098/rspa.2005.1592
  2. - B. Bozzini, I. Sgura – A Non-Linear AC Spectrometry Study of the Electrodeposition of Cu from Acidic Sulphate Solutions in the Presence of PEG, Journal of Applied Electrochemistry, Vol. 36 (2006) 983–989, Springer Netherlands, Dordrecht DOI:10.1007/s10800-006-9128-9.
  3. - G. Saccomandi, I. Sgura The Relevance of Nonlinear Stacking Interactions in Simple Models of Double-Stranded DNA,  Jour. Royal Soc. Interface, Vol.3, N.10 (2006) 655--667, The Royal Soc. Pub, London (GB) doi:10.1098/rsif.2006.0126

2005

  1. - P. Amodio, I. Sgura High Order Finite Difference Schemes for the Solution of Second Order BVPs, Jour. Comp. and Appl. Math,  Vol. 176, N.1 (2005) 59--76, Elsevier Science B.V. Amsterdam (The Netherlands). DOI:10.1016/j.cam.2004.07.008
  2. - B. Bozzini, I. Sgura Numerical Issues Related to the Modelling of Electrochemical Impedance Data by Non-Linear Least Squares, Intern. Journ. of Nonlinear Mechanics, Vol. 40 (2005) 557--570, Elsevier Science Ltd (Pergamon), Oxford (UK)
  3. - I. Sgura Numerical Studies of Nonlinear Lattice Models for DNA Dynamics, Mathematisches Forschungsinstitut Oberwolfach Report (OWR)  No. 9/2005, ISSN 1660-8933, R. W. Ogden, G. Saccomandi Eds. Proceedings of the Mini-Workshop: Mathematical Methods and Models of Continuum Biomechanics, February 20-26, 2005, 524-525. NO ISI

2004

  1. - M.T. Chu, F. Diele, I. Sgura Gradient Flow Methods for Matrix Completion with Prescribed Eigenvalues, Linear Algebra and its Applications, Vol. 379, 2004, 85-112, Elsevier Science Inc., New York, NY (USA). DOI: 10.1016/S0024-3795(03)00393-8
  2. - R.W. Ogden, G. Saccomandi, I. Sgura –Fitting hyperelastic models to experimental data, Computational Mechanics, Vol. 34 (2004) 484--502, Springer-Verlag, Berlin DOI 10.1007/s00466-004-0593-y
  3. - B. Bozzini, C. Mele, I. Sgura –On the Observation of Inductive High-frequency Impedance Behaviour during the Electrodeposition of Au-Sn Alloys, Journal of Applied Electrochemistry, Vol.34, N.3 (2004) 277-281, Kluwer Academic Pubs. Dordrecht (The Netherlands).

2003

  1. - F. Diele, I. Sgura -Centro-Symmetric Isospectral Flows and Some Inverse Eigenvalue Problems, Linear Algebra and its Applications, Vol. 366 (2003) 199--214, Elsevier Science Inc. New York, NY (USA). DOI: 10.1016/S0024-3795(02)00468-8
  2. - M.T. Chu, F. Diele, I. Sgura -On Robust Matrix Completion with Prescribed Eigenvalues, Future Generation Computer Systems. FGCS Vol.19, N.7 (2003) 1139–-1153, Elsevier Science B.V. Amsterdam, (The Netherlands). DOI: 10.1016/S0167-739X(03)00040-2

2002

  1. - F. Mazzia, I. Sgura - Numerical Approximation of Nonlinear BVP by means of BVMs, Applied Num. Math. , Vol.42, N.1 (2002) 337--352, Elsevier Science B.V. Amsterdam (The Netherlands). DOI: 10.1016/S0168-9274(01)00159-3:
  2. - C.O. Horgan, G. Saccomandi, I. Sgura - A Two Point Boundary Value Problem for the Axial Shear of Isotropic Incompressible Nonlinearly Elastic Materials, SIAM Journal of Applied Math. Vol.62, N.5 (2002) 1712--1727, (SIAM), Philadelphia, PA (USA) DOI: 10.1137/S0036139901391963
  3. - F. Diele, I. Sgura - The Cayley Method and the Inverse Eigenvalue Problem for Toeplitz Matrices, BIT, Vol.42, N.2 (2002) 285-299, Swets & Zeitlinger Pubs, Lisse (The Netherlands).
  4. - F. Diele, F. Notarnicola, I. Sgura - Uniform air velocity field for a bioventing system design: some numerical results, International Journ. of Engineering Science, Vol. 40, 2002, pp. 1199-1210, Elsevier Science Ltd (Pergamon), Oxford (UK) 

2000

  1. - (*) N. Del Buono, F. Diele, L. Lopez, C. Mastroserio, R. Peluso, T. Politi, I. Sgura Conservative methods for Ordinary Differential Equations on Quadratic Groups. Annali dell’Università di Ferrara. SEZIONE 7: SCIENZE MATEMATICHE, vol. XLV, (2000) 267-278, ISSN: 0430-3202 NO ISI

1999

          1. B. Buonomo, A. Di Liddo, I. Sgura -A Diffusive-Convective Model for the Dynamics of Population-Toxicant Interactions: Some Analytical and Numerical Results,  Mathematical Biosciences, Vol. 157 (1999) 37-64, Elsevier Science Publishing Co., New York, NY (USA). DOI: 10.1016/S0025-5564(98)10076-7

          2.  F. Diele, I. Sgura - Isospectral Flows and the Inverse Eigenvalue Problem for Toeplitz Matrices, Jour. of Comp. and Applied Math, Vol. 110 (1999) 25-43, Elsevier Science B.V. Amsterdam (North-Holland).

1998

  1.  - R. Peluso, S. Ragni, I. Sgura -A Unifying Approach to Stability and Invariance Properties of ODEs, Nonlinear Studies, Vol. 5 (1998) 173-189,I & S Publishers, Daytona Beach, FL (USA) NO ISI

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Publications in volumes   10

  1. I. Sgura,  B. Bozzini, D. Lacitignola, - Numerical approximation of oscillating Turing patterns in a reaction-diffusion model for electrochemical material growth, American Institute of Physics (AIP) AIP Conf. Proc., 2012, Melville, New York: vol. 1493, p. 896-903, doi: 10.1063/1.47655942-s2.0-84873144020, WOS:000312264400133  ISBN:978-0-7354-1105- ISSN: 0094-243X
  2. B. Bozzini, S. Maci, I. Sgura, R. Lo Presti, E. Simonetti (2009). Numerical modelling of MCFC cathode degradation in terms of morphological variations. In: -. Proceedings of EFC (European Fuel Cells 2009) Third European Fuel Cell Technoogy & Applications Conference - Pietro Lunghi Conference. p. 345-346, Roma: ENEA ISBN: 9788882862114
  3. B. Bozzini, I. Sgura  - “Local Current Density Distribution Effects in the Electrodeposition of Composites” in "Nonlinear Analysis Research Trends" , Eds. Inès N. Roux, Nova Science Publishers, Inc., Hauppauge, NY. 2008, pp.15-25 ISBN 978-1-60456-358-0 NO ISI
  4. B. Bozzini, I. Sgura, L. D’Urzo - “Modelling of morphological control of electrodeposited Cu by adsorption of aminoacids and oligopeptides”, Review Article, Contribution to the Volume: “New Developments in Electrodeposition and Pitting Research”, Ahmed El Nemr Eds, Research Signpost Pub., Fort P.O., Trivandrum, Kerala, India, 2007, Cap. 7, p.193ss ISBN 978-81-7895-304-5 NO ISI
  5. B. Bozzini, D. Lacitignola, I. Sgura “Turing Instability in an Electrodeposition Morphogenesis Model: An Analytical, Numerical and Experimental Study”, Computation in Modern Science and Engineering, AIP Conf. Proc., Dec. 26, 2007, Vol. 963, Proceedings of the Int. Conf. on Computational Methods in Science and Engineering 2007 (ICCMSE 2007): VOL.2, PARTS A, 2007, pp. 465-468, doi:10.1063/1.2836113 ISBN: 978-0-7354-0477-9,
  6. M. Carriero, A. Farina, I. Sgura - “Image Segmentation in the Framework of Free Discontinuity Problems” – in D. Pallara (Eds): Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, Quaderni di Matematica, Vol. 14, Dipartimento di Matematica Seconda Università di Napoli, Aracne Ed. 2004, pp.85-134 (ISBN 88-7999-414-X) NO ISI
  7. P. Amodio, I. Sgura – “High Order Finite Difference Schemes for the Solution of Elliptic PDEs”,  CIS 2004, Lectures Notes in Computer Sciences 3314, J. Zhang, J.-H. He and Y. Fu Eds. 2004, Berlin, 2004 – Proceedings of the Conference CIS04 – Shanghai, China, December 16-18, 2004, pp.1-6 , ISBN: 3-540-24127-2
  8. F. Diele, F. Notarnicola, I. Sgura ”Some Mathematical Problems in the Designing of Subsoil Decontamination by Bioventing”, Progress in Industrial Mathematics at ECMI 2000, Eds. A.M. Anile, V.Capasso, A.Greco, Springer Eds. 2002, 11th Conference of the European Consortium for Mathematics in Industry (ECMI 2000), Torre Normanna, Altavilla Milicia - Palermo, Sept. 2000.- pp.506-511 ISBN: 3540425829 NO ISI
  9. F. Diele, T. Politi, I. Sgura - “A Fortran90 Routine for the Solution of Orthogonal Differential Problems”, Computational Science - ICCS 2002, P.Sloot, K.Tan, J. Dongarra & A.Hoekstra Eds., Lecture Notes in Computer Science, Springer, Berlin, 2002, International Conference ICCS 2002, Amsterdam, The Netherlands, April 21-24, 2002, part III(2331), pp.449-458 ISBN: 978-3-540-43594-5, doi: 10.1007/3-540-47789-6_47
  10. R. Peluso, I. Sgura - “Newton Method for Symmetric Inverse Eigenvalue Problems” in "Recent Trends in Numerical Analysis", Advances in Computation: Theory and Practice (ACTP) Series, Eds. D. Trigiante, Nova Science Pub In, Hauppauge, NY, 2000, Vol. 3, pp.289-298 ISBN 1-56072-885-X NO ISI

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Conference Proceedings    5

  1. B. Bozzini, P. Cavaliere, C. Mele, I. Sgura
    ”Crack repairing in AA2099 by Cu electrodeposition (ECD) “
    Proceedings of Crack Paths (CP 2012), Gaeta, Italy 2012, AA.VV Eds: Gruppo Italiano Frattura, 2012, A. Carpinteri, F. Iacoviello, L.P. Pook, L. Susmel, pp.603-610 (electronic publication) ISBN 978-88-95940-44-1, ISSN 2281-1060 NO ISI
  2. B. Bozzini, S. Maci,  I. Sgura, R. Lo Presti, E. Simonetti -  An agglomerate model for the rationalisation of MCFC cathode degradation”, European COMSOL Multiphysics Conference 2009 Milan Proceedings CD, 14-16 October 2009, Milano (electronic publication) pp.1-6 http://www.comsol.com/papers/6609/ ISBN 978-0-9825697-0-2 NO ISI
  3. A. Lay-Ekuakille, G. Vendramin, A. Trotta, I. Sgura, T. Zielinski,  P. Turcza “Accuracy Assessment of Sensed of Biomedical Images for Myocardial Infarction Prediction”. Proceedings of IEEE-ICST 2008, The 3rd International Conference on Sensing Technology. Tainan (Taiwan). Nov.30 - Dec.3, 2008. (2008) art. N. 4757147, pp. 457-461
  4. A. Lay-Ekuakille, G. Vendramin, I. Sgura, A. Trotta, “Cardio-Vascular Image Contrast Improvement via Hardware Design”, Proceedings of 16th IMEKO TC4 Symposium Exploring New Frontiers of Instrumentation and Methods for Electrical and Electronic Measurements Sept. 22-24, 2008, Florence, Italy, 2008, Budapest: Imeko (Hungary) pp 1-5 NO ISI
  5. I. Sgura, F. Zarcone, B. Bozzini -  “Simulation of Current Collector Corrosion Effects on the Efficiency of Molten Carbonate Fuel Cells (MCFC)”, of the COMSOL Multiphysics Conference 2008 Hannover Proceedings CD,  4-6 November 2008, Hannover http://www.comsol.com/papers/5592/ pp.1-6 ISBN: 978-0-9766792-3-3 NO ISI

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Technical reports, Magazines & ArXiv  13

  1. M. Carriero, A. Farina, I. Sgura - “Image Segmentation in the Framework of Free Discontinuity Problems: a Survey on Mumford & Shah Functional and Numerical Simulations”, Preprint N. 1/2002 Dipartimento di Matematica Università di Lecce (2002)
  2. M. Carriero, A. Farina, I. Sgura - “Blake & Zisserman variational model for image segmentation”, Preprint N. 15/2002 Dipartimento di Matematica Università di Lecce (2002)
  3. I. Sgura The Method of Lines Coupled with BVMs for the Numerical Approximation of Elliptic PDEs”, Preprint N. 1/ 2003 Dipartimento di Matematica, Università di Lecce (2003)
  4. B. Bozzini, I. Sgura – “A Contribution to the Mathematical Formulation of Electrochemical Impedance”, Preprint N. 12/ 2005 Dipartimento di Matematica, Università di Lecce (2005)
  5. R.W. Ogden, G. Saccomandi, I. Sgura – A Phenomenological Three-Dimensional Theory of the Wormlike Chain”, Preprint N. 2005/09 Department of Mathematics, Univ. of Glasgow (2005)
  6. G. Saccomandi, I. Sgura – “The Software THERMICO for the Numerical Simulation of Asphalt Concrete Pavement Temperature” Preprint N. 01/2008, Dipartimento di Matematica, Università del Salento, Lecce (2008)
  7. B. Bozzini, I. Sgura – “A Mathematical Model for the Corrosion of Metallic Bipolar Plates in PEM Fuel Cells: Numerical and Experimental Issues”, Preprint N. 20/ 2008 Dipartimento di Matematica, Università del Salento, Lecce (2008
  8. R.W. Ogden, G. Saccomandi, I. Sgura – “A New Mathematical Framework for Describing DNA Overstretching Phenomena”, Preprint N. 21/ 2008, Dipartimento di Matematica, Università del Salento, Lecce (2008)
  9. B. Bozzini, D. Lacitignola, I. Sgura “Ripple effect: Levelling of electrodeposits can be achieved by applying a small forcing voltage” Products Finishing Magazine N. 3 (2012)  Gardner Publications Inc., Cincinnati, Ohio (USA) www.pfonline.com/articles/
  10. B. Bozzini, A. Gianoncelli, B. Kaulich, M. Kiskinova, M. Prasciolu, I. Sgura (2011). X-ray Imaging and Microspectroscopy Study of Metallic Plate Corrosion and Uptake of Corrosion Products by Nafion in PEMFCs. In: ELETTRA Highlights 2010-2011. p. 68-69, Trieste:Sinctrotrone Trieste S.C.p.A., ISBN: 8880867733
  11. B. Bozzini, L. D’Urzo, A. Gianoncelli, B. Kaulich, M. Prasciolu, I. Sgura, M. Kiskinova -“An in-situ SXTM, XAS and XRF investigation of the electrochemical corrosion of metal-based bipolar plate materials used in fuel cells”,  ELETTRA Highlights 2008-2009, Sincrotrone Trieste (2009), pp.22-23, www.elettra.trieste.it/science/highlights/
  12. M. Frittelli, A. Madzvamuse, I.Sgura, C.Venkataraman - Lumped finite element method for reaction-diffusion systems on compact surfaces, arXiv:1609.02741 [math.NA] September 9, 2016 https://arxiv.org/abs/1609.02741
  13. M. C. D'Autilia, I. Sgura, V. Simoncini - Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications, arXiv:1903.05030v1 [math.NA] (March 2019)

 

Consulta le pubblicazioni su IRIS

Temi di ricerca

 

 

APPROSSIMAZIONE NUMERICA DI EQUAZIONI DIFFERENZIALI
(A) EQUAZIONI DIFFERENZIALI ORDINARIE (ODE) CON VALORI AI LIMITI (B.V.P.)
• schemi di ordine elevato alle differenze finite (centrali e upwind), metodo di quasi-linearizzazione
• Applicazioni in Elasticità Non Lineare: studio di fenomeni di localizzazione ed approssimazione di BVP con soluzioni singolari
(B) SISTEMI DI ODE DI TIPO CONSERVATIVO E PROBLEMI INVERSI IN ALGEBRA LINEARE
Problemi inversi agli autovalori per matrici con struttura o per matrici parzialmente assegnate ed approssimazione mediante il metodo di Cayley per il flusso gradiente.
(C) EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI (P.D.E.)
- LAVORI METODOLOGICI SU SCHEMI ALLE DIFFERENZE FINITE DI ORDINE ELEVATO

- LAVORI METODOLOGICI SU SCHEMI AGLI ELEMENTI FINITI CLASSICI E VIRTUALI PER PROBLEMI SU SUPERFICI STAZIONARIE O EVOLVENTI NEL TEMPO
- APPLICAZIONI  IN:

Elettrochimica: approssimazione di pattern di Turing per la crescita di metalli nelle batterie

Bio-meccanica: formazione di rughe in materiali rubber-like e soft-tissues
Bio-matematica: dinamica di una popolazione in ambiente inquinato
Fluidodinamica in mezzi porosi: decontaminazione del sottosuolo inquinato da idrocarburi mediante tecniche di bio-ventilazione
Image analysis: segmentazione di immagini come problema nel Calcolo delle Variazioni

MODELLISTICA COMPUTAZIONALE PER PROBLEMATICHE TECNICHE E SCIENTIFICHE
MODELLI MATEMATICI PER PROCESSI DI ELETTRODEPOSIZIONE
• Modellizzazione geometrica della crescita di metalli
• Studio della corrosione in celle a combustibile
• Studio di instabilità di Turing e pattern fomation in sistemi di reazione-diffusione

MODELLI MATEMATICI PER LO STUDIO DELL’ASFALTO

MODELLI MATEMATICI PER LO STUDIO DEL DNA
• Studio delle formule interpolatorie Worm-like-Chain (WLC)
• Studio di traveling waves a supporto compatto (compactons) per la denaturazione del DNA ad opera dell’RNA polimerasi

IDENTIFICAZIONE DI PARAMETRI IN MODELLI NON LINEARI

PDE constrained optimization: confronto fra simulazioni e dati sperimentali di eletrodeposizione; identificazione di parametri in modelli PDEs; 

APPROSSIMAZIONE NEL SENSO DEI MINIMI QUADRATI
• Aspetti numerici (mal-condizionamento) e computazionali
• Analisi e confronto di potenziali elastici in elasticità non lineare
• Regolarizzazione basata sullo studio di armoniche superiori per il fitting delle curve di impedenza elettrochimica (EIS)